
Journal of Chromatography, 531 (199 1) 497-506 
Elsevier Science Publishers B.V., Amsterdam 

CHROM. 22 936 

Letter to the Editor 

Pitfalls in the choice of isotherms for the calculation of band 
profiles in preparative chromatography 

Sir, 

The last years have brought significant advances in the theory of non-linear 
chromatography and, especially, in the prediction of the individual elution band 
profiles in preparative liquid chromatography by computer simulation [l-9]. With the 
increasing power of computers, accurate approximations have become possible. Some 
of the various finite difference algorithms that can be used for the correct simulation of 
chromatograms have been discussed recently [lo]. These algorithms are procedures of 
propagating the chromatographic signal through a grid of time and space coordinates. 
Except at very low column efficiencies (number of theoretical plates, N < 1000) they 
all give nearly identical band profiles. The central part of any of these simulation 
methods is the calculation of the fraction of the sample molecules that has to be 
propagated, using the proper distribution isotherm (mostly, competitive Langmuir 
isotherms are chosen for lack of a better equation). Of these methods, the Craig model 
appears as a particular case that requires that this equilibration be done by iterations at 
each step along the grid [lo]. For this reason, the implementation of a Craig model is 
bound to consume much longer computing times than other methods that do not 
require this iterative calculation [l l-l 31. 

Attempts have been made at eliminating the time consuming equilibration step 
of the Craig model [2,14-161. In a recent publication, an algorithm has been proposed 
that replaces the two-component competitive Langmuir isotherm with a new 
numerical approximation [17]. This algorithm is claimed to be “accurate to within 
+ 10% for a wide range of sample concentrations and sample k’ values” (k’ = capacity 
factor) [ 171. Indeed, many of the peak shapes shown in this work resemble those found 
in experimental preparative chromatography [18,19] and those obtained in band 
profile calculations by other groups [3,5-8,101. Surprisingly, however, at high sample 
loads, the formation of double peaks is predicted. According to the literature, this 
should not be possible with a monotonically curved isotherm [20,21], such as the 
Langmuir isotherm. So far, to the best of our knowledge, it has never been reported to 
have occurred in any experiment. 

Furthermore, the authors report [17,22] that the retention times predicted with 
their method agree poorly with their experimental data or with the results of 
calculations we have published [3,6,7,12]. They tried to circumvent this consistent 
disagreement by using an empirical factor with which they multiply the sample size (or 
the injection concentration). Agreement is then claimed between experimental results 
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and the results of the calculations performed with the “corrected” sample load. The 
value of the correction factor is given as intermediate between 1.5 and 1.8 [17,22]. 

In our own work, we have always observed an excellent agreement between 
experimental band profiles and the results of the simulations when they were carried 
out using the equilibrium isotherms determined on the same column [23-261. Thus, the 
unexpected peak profiles presented in ref. 17 deserved some investigation. We have 
also noticed that the individual elution band profiles are sensitive to minor changes in 
the isotherms. As we report here, the exact nature of the isotherms used [ 171 is the cause 
for the questionable results. Since the published procedure (Appendix, ref. 17) 
contains some inconsistencies and typographical errors, we give the version we used in 
Appendix I, with the list of changes made to the published program [ 171. Judging by the 
excellent agreement between our results and those published, the program in Appendix 
I is a very close match to what the authors of ref. 17 have used. 

PROCEDURE AND EXPERIMENTAL CONFIGURATION 

Langmuir isotherm 
In Craig simulations, the total amount of a sample component in one column 

plate must be distributed between the stationary and the mobile phases according to its 
equilibrium isotherm. Then, the fraction in the mobile phase moves forward to the next 
plate, whereas the fraction in the stationary phase stays behind and is equilibrated with 
the mobile phase coming from the preceding plate. Thus, it is necessary to calculate 
both equilibrium concentrations from the total amount of each component contained 
in the plate. 

For the lack of a better model, the most commonly used isotherm in liquid-solid 
chromatography is the competitive Langmuir isotherm: 

LZiCi 
4i = 

1 + f: bjCj 
j=l 

(1) 

where qi and Ci are the local equilibrium concentrations of the compound i in the 
stationary and the mobile phases, respectively, and ai and hi are coefficients the 
numerical values of which are characteristic of the compound i and the phase system 
and determine the saturation capacity of the column. 

The Langmuir competitive isotherm is a convenient first order approximation 
the most serious inconvenient of which is not to satisfy the Gibbs-Duhem equation, 
unless the column saturation capacities, ai/bi, are the same for the two components. 
There are some possibilities to correct for this drawback [27]. Experimental results 
show reasonably good agreement with profiles calculated using a competitive 
Langmuir isotherm model [25]. 

For the calculation of chromatographic profiles, it is necessary to keep track of 
the amounts of each compound, rather than of concentrations. Thus, it is convenient 
to report both amounts in the same units. The amount in the stationary phase is also 
divided by the volume of mobile phase in one plate. Instead of the ai, parameter, we use 
the limiting retention factor at infinite dilution, k0.i: 

kb,iCi 
” = 1 + xb,C, 

(2) 
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This allows us the use of the same numerical values, whether we discuss compound 
amounts as in ref. 17 (w,, w,) or their concentrations (q, C). 

When there is only one component, eqn. 1 can be rearranged and solved in closed 
form for C. For a multi-component mixture, there are no closed form solutions giving 
the mobile phase concentrations as functions of the total amount of each component. 
Nevertheless, it is straightforward to calculate the numerical solution by an iterative 
approximation such as the following one. If the above definition of the stationary 
phase concentrations is followed, the amounts in either phase are proportional to the 
quantities Cor q’, respectively. The total amount of a component in one cell divided by 
the volume of the mobile phase in this cell then corresponds to the sum of the amounts 
of the component i in the two phases contained in this cell: 

Ti = Ci + 41 (3) 

For the two components, X and Y, we have: 

q;( = TX - C, = k&x& 
1 + bxCx + byCy 

and 

q; = Ty - C, - kb,YCY 
1 + b&x + by& 

The total amounts, TX and Ty, of the two components in the cell considered are 
known. Eqns. 4, then, have to be solved for the two mobile phase concentrations, Cx 
and C,. We can consider the denominator in eqn. 4 as a correction factor and solve for 
Ci in the numerator (see Appendix II). After each iteration step, the value of the 
denominator is updated, using the new values of the concentrations Ci. When the 
difference between two successive values of the two concentrations drops below 
1 10PO, the approximation is considered as satisfactory and the resulting 
concentrations are used in the propagation step. This procedure has proven to be very 
robust and converges rapidly. 

Isotherm parameters 
According to the Appendix of ref. 17, “in a Langmuir type system [. ..] 

a one-stage equilibrium is assumed, having a mobile phase volume of 1.0 ml and 
a stationary phase capacity of 0.1 g of sample”. For a 400-plate system, the dead 
volume is 400 ml and the saturation capacity is 40 g. In order to inject an amount of 
20% of the column saturation capacity for one of the two components of the mixture, 
we need a sample solution containing 8 g of each component for 1 ml of mobile phase 
(the content of one plate). This is quite unrealistic, but the injection had to be carried 
out during one cycle time in order to duplicate the published results. For a more 
realistic simulation, the injection should last several cycle times and its profile should 
mirror the experimental injection profile. In our computations, we have chosen a 10 cm 
long column and a mobile phase velocity of 0.1 cm/s, which gives a cycle time of 
At = 0.25 s. The space increment along the column is AZ = 0.025 cm. 
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The Langmuir parameters, bi, can be calculated from the relationship: 

The values of the various input parameters used are presented in Table I. Note that the 
values of bi are not used in the computation method described in ref. 17. 

Computation times 
The execution times for three simulation runs carried out with different loads are 

given in Table II. They are reported as the times required for the completion of one 
band propagation step, including the equilibration in one Craig plate. The equilibra- 
tion according to the procedure described in the previous section needs an average of 
five iterations to converge to a concentration difference of 1 lo-“. This may take up 
to 15 iterations in the vicinity of steep concentration gradients, i.e., for the band fronts. 
The explicit isotherm from ref. 17 avoids these iterations but requires two expo- 
nentiations at low sample loads or one square root at high loads. On the machine 
language level, both these operations require rather complex manipulations. The end 
result is that there is no clear computational advantage in using the isotherm of ref. 17. 
Depending on the computer used (VAX or PC with different processors), it may be 
either somewhat slower or slightly faster than the iteration procedure. 

RESULTS AND DISCUSSION 

The most striking feature of the isotherm of ref. 17 is the concentration 
discontinuity observed for a sample amount of 0.175 units (u’,,, for kx = 1). At low 
concentrations, the isotherm agrees quite closely with the corresponding competitive 
Langmuir isotherm (eqn. 1). When the cumulative load of both components in one 
Craig stage exceeds this threshold amount, the algorithm follows a distribution law 
that is completely different from the one used at lower total loads. The two branches of 

TABLE I 

PARAMETERS USED IN THE COMPUTER SIMULATIONS 
_ 

Numerical simulution of‘hand propugution in non-linear chromatography 

(1) Input profiles (for a load of 2 x 20% of saturation): 
Calculation 1: concentration 8.00 during 0.25 s 
Calculation 2: concentration 8.00 during 0.25 s 

(2) Column: column length 10 cm 
linear velocity 0.10 cm/s 
height equivalent to a theoretical plate for k’ = cc 250 nm (400 plates) 

(3) Retention at low load, isotherm data: 
Calculation 1: 200.0 s k’ = 1.0 b = 10.00 
Calculation 2: 270.0 s k’ = 1.7 b = 17.00 

(4) Craig simulation: 
grid spacing [IO] dz = 0.025000 cm AZ = 0.250000 s 

The sample sizes are given as loading factors, i.e. fractional column saturations, 
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TABLE II 

EXECUTION TIMES ON DEC VAX 6000440: TIME NEEDED FOR ONE EQUILIBRATION 
FOLLOWED BY A PROPAGATION STEP. 400 CRAIG STAGES, k’ = 1.0 and 1.7. 

Load Ref. 17 Langmuir Difference 

2 x 2.5% of capacity 60 ps 42 ps + 30% 
2 x 20% of capacity 60 ns 59 /ls +2% 
2 x 30% of capacity 57 ps 62 ps -8% 

the isotherm do not even link up at this point (Fig. 1). As a result, the concentrations of 
the two components in both phases change abruptly. As the concentration in one 
phase increases, the concentration in the other phase decreases by the corresponding 
amount. This property is illustrated in Fig. 1 which shows, for one component, the 
amount adsorbed in the stationary phase of one stage versus the total amount in both 
phases. This discontinuity is disconcerting and makes no physical sense. 

The objective of introducing the upper part of the isotherm seems to have been to 
force complete saturation of the stationary phase at all sample loads above the 
threshold. When only one component is present, the concentration in the stationary 
phase is set equal to the saturation limit. For a binary mixture (Fig. I), the numerical 
value of a complicated function (Appendix I) determines the relative amount supplied 
by each component to complete stationary phase loading. The amounts in the mobile 
phase are calculated as the leftovers of this process. 

Langmuir 

1 

0.1 0.2 

total amount of compound 1 

Fig. 1. Distribution isotherm of the first component of a binary system calculated according to the procedure 
described in ref. 17 and comparison with Langmuir isotherm. Plot of the amount of first component in the 
stationary phase versus the total amount of component 1 in the system (solid line). Langmuir isotherm in 
dotted lines. Amount of component 2 constant (wy = 0.10 g/ml). 



502 LETTERS TO THE EDITOR 

This choice of a constant equilibrium concentration at all high mobile phase 
concentrations is rather unfortunate. According to thermodynamics, when the 
concentration in one phase is changed, the equilibrium is restored by a proper change 
in the other phase. This would be impossible if the concentration in one phase were 
fixed. Therefore a saturation concentration can be only an asymptotic limit. 

The effects of the isotherm shape on calculated band profiles are shown by the 
example in Fig. 2. It compares the chromatograms calculated with isotherms obtained 
using the algorithms in either Appendix I (solid lines) or Appendix II (true competitive 
Langmuir isotherm, dotted lines). The “experimental conditions” for this simulation 
are equivalent to those given in ref. 17 for Fig. 5e, to which the result must be 
compared. 

The chromatogram calculated following the iterative procedure (dotted lines) is 
in close qualitative agreement with experimental band profiles reported in earlier work 
[23-261. It exhibits the typical tag-along effect reported previously [3,6]. Due to the 
strong blockage of the adsorbent surface by the molecules of the first component, the 
front of the second component band moves much faster than its tail [28]. This 
phenomenon leads to the formation of a plateau trailing behind the maximum of the 
second band and often eroded into a shoulder by the finite kinetics of mass transfer 
[6,281. 

In contrast, the profiles produced by the discontinuous isotherm exhibit 
a shoulder preceding the band maximum (Fig. 3e in ref. 17) or even a second peak (Fig. 
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Fig. 2. Chromatograms calculated using the two isotherm calculation procedures described in the present 
paper. Craig model program. Solid line: individual band profiles obtained with the discontinuous isotherm 
calculated according to the procedure in ref. 17 (Appendix). Dotted line: individual band profiles obtained 
with the Langmuir competitive isotherm calculated according to the procedure in Appendix II of this work. 

Conditions: k; = 1, a = 1.7, loading factors: L,,, = L,,, = 0.20,400 plates. Compare to Fig. 5e in ref. 17. 
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Fig. 3. Chromatograms calculated using the two isotherm calculation procedures described in the present 
paper. Craig model program. Solid line: individual band profiles obtained with the discontinuous isotherm, 

calculated according to the procedure in ref. 17 (Appendix I). (a) Calculation made with the true sample 
amount. (b) Calculation made with an adjusted sample size equal to 1.5 times the true sample amount. 
Dotted line: individual band profiles obtained with the competitive Langmuir isotherm calculated according 
to the iterative procedure in Appendix II, for the true sample amount (both in a and b). Conditions: k; = I, 
G! = 1.7. L, , = L,, = 0.10, n, = 400 plates. Compare to Fig. 5d in ref. 17. 

2, loading factor 20% for each component, separation factor, a = 1.7). The position of 
the valley between the two peaks of the second band corresponds to the region at the 
rear of the first band where the cumulative sample concentration drops suddenly below 
the threshold level. Concurrently, the amount adsorbed falls from complete saturation 
down to the values determined by the lower part of the isotherm (see Fig. 1). These 
band shapes are not consistent with a monotonically curved isotherm. 

Fig. 3a compares the chromatograms obtained with the two isotherms under the 
same conditions as in Fig. 2 but with a lower sample size (loading factors = 10%). 
Both chromatograms have band profiles that look quite reasonable, with almost 
touching band separation. There is still a serious difference in the retention times 
however. Both peaks calculated with the discontinuous isotherm (Fig. 3a, solid lines) 
appear at higher retention times than expected (dotted lines). The explanation lies in 
the shape of the isotherm. Whereas its lower part is virtually identical to the Langmuir 
model, the higher part has a much higher fraction of the sample adsorbed. 
Accordingly, the band fronts move more slowly than with asymptotic saturation 
behavior and the retention times are too long. 

The procedure selected to correct for this discrepancy tries to remedy the effects 
of an incorrect isotherm by an adjustment of the sample size [17]. If the loading factor 
for a given sample size is multiplied by an arbitrary factor, the bands elute faster [28]. 
Values between 1.5 and 1.8 are suggested for the correction factor [17,22]. As seen in 
Fig. 3b, this approach is only moderately successful. Although the retention times of 
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the first component band are about the same for the chromatogram calculated using 
the true Langmuir isotherm (dotted lines same as in Fig. 3a) and the one calculated 
with a correction factor of 1.5 using the discontinuous isotherm (solid lines), the band 
profiles are markedly different. Of special importance is the fact that with the 
Langmuir isotherm we come close to a touching band separation, whereas the 
chromatogram simulated with the discontinuous isotherm and an adjusted sample size 
(increased by 50%) exhibits a much poorer resolution. When a correction factor of 1.8 
is used, the agreement between the two procedures is still worse. This shows that the 
use of a fixed correction factor cannot permit the calculation of consistently correct 
retention times or peak profiles. It cannot be trusted either in the derivation of the 
correct sample size that would allow touching band separations (Fig. 3b), as is the aim 
of the CRAIG4 subprogram and software packages built around it [29]. 

CONCLUSION 

In this paper we have shown that it may be both unnecessary and risky to replace 
an implicit function (the competitive Langmuir isotherm) by an explicit approxima- 
tion. The approximation proposed in a recent paper [17] does not help to save 
computation time. Instead, it introduces a discontinuity in the equilibrium concen- 
trations, which renders the isotherm meaningless and leads to incorrect and rather 
unusual peak shapes. If a Langmuir isotherm has been chosen to represent the 
experimental results, an iterative solution is to be preferred. 
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APPENDIX I 

Procedure to calculate equilibrium concentrations 

Isotherm of ref. 17 (for symbols see ref. 17): 
Calculate once, outside loop: 
CI = k,/kx -+ & 
A = - (a - 1) 

D, = 0.5jkx + 0.7 k;.37 

4 = OS/k, + 0.7 k;,37 
C, = 0.62 10D” k;“.4 

CY = 0 62 lO”Y k-o.4 

W mnx = 0:175 - 0.613 log k, 

Calculate inside loop for every plate at every time: (w, and wy are the amounts 
of X and Y in that plate) 
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W tot = wx + U’y 
if wtot > w,,,: 

Be = wto’ - O.l = w, (a - 1) + 0.1 + a Q 
C =-w~cIQ 
w,, = [- B + (B2 - 4 AC)‘]/2 A 

wxs = 
“YS = ;;I I %;z 

Wym = wy - w,, 
(if only one compound is present, w,, or w,, = 0.1) 

if wtot d w,,,: 
J, = wx + WY & 

Jy = wy + wxi Ja 
Rx = (l/k,) + C’,J: 

RY = (l/k,) + C,J$?’ 

WWS = w,/(l + Rx) 
W xm = 

WYS 
= :;,(; ?R,) 

Wym = WY - wys 

505 

(Note 1) 

(Note 2) 

(Note 3) 
(Note 3) 

Changes versus the original version of ref. I7 
Note I: original: B = [w,(cl-- l)] + O.lcrQ 
Using the product O.lc(Q can lead the program to take the square root of 

a negative value. 
Note 2: original: for w, = 0, wyS = 0.1, wym = 0.1 - wy; 

for wY = 0, w,, = 0.1, w,, = 0.1 - w,. 
These instructions do not conserve mass. 

Note 3: original: J, = w, + (cciwy)wy 
J, = wy + (a-+w,)w, 

The repetition of wi is obviously an editing error. 

APPENDIX II 

Procedure to calculate equilibrium concentrations 
Langmuir isotherm: for the purpose of this paper, the variables used below can 

be equated with those from ref. 17 according to: 

TX = w, 
Cx = WXIII 
4: = wxs 

The Langmuir parameter b is not used in ref. 17. 
Calculate inside loop for every plate at every time: 
iterative approximation: 
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denominator = 1 + 6, C, + 6, C, 
C, = TX/(1 + k,/denominator) 
C, = 7’,/(1 + k,/denominator) 

repeat until convergence (typically five times) 

q: = T, - C, 
q; = TY - C, 
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